Genetically regulated tumor gene expression in the Carolina Breast Cancer Study

November 5, 2019

Michael Love
Department of Biostatistics
Department of Genetics
UNC-Chapel Hill

bit.ly/bc-twats
Disclosure statement

• The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months:
 – C.M.P. is an equity stockholder in and consultant for BioClassifier LLC; C.M.P. is also listed as an inventor on patent applications on the Breast PAM50 Subtyping assay. The other authors declare that they have no competing interests.
Research Team at UNC

• Arjun Bhattacharya – Biostatistics Ph.D. candidate
• Melissa Troester – PI of Carolina Breast Cancer Study
• Andy Olshan – co-PI of CBCS
• Charles Perou - Molecular Oncology, Genetics
Carolina Breast Cancer Study

• population-based study among NC women (1993-2013)
• aims of the study at outset:
 – integration of epidemiology and molecular biology
 – identify causes of BC among African-American women (AA) and women of European ancestries (WW)
 – associations between environmental & behavioral factors and BC in relation to specific molecular alterations (germline and tumor)
• young women (20-49 yrs) and self-identified African American women oversampled using randomized recruitment
Carolina Breast Cancer Study

• key considerations for the study:
 – heterogeneity of disease (histopathology, genomics)
 – known racial disparities in incidence and survival in the US
 – small portion of incidence explained by germline susceptibility
 – to what degree does observed variability in disease reflect underlying etiologic heterogeneity?
Carolina Breast Cancer Study

• eligibility criteria:
 – female,
 – first diagnosis of invasive or in situ breast cancer,
 – aged 20–74 years at diagnosis,
 – residence in specified NC counties

• this work: 3,828 women with BC (1,865 AA + 1,963 WW) from phases 1-3 with relevant survival, clinical, genomic variables
Germline variation

Race

Tumor expression

Access to healthcare and socioeconomic factors

Breast cancer survival

Genome-wide association studies
Azzato 2010, Rafiq 2014, Pirie 2015, Khan 2018

D’Arcy 2015, Parada 2017

Carey 2006, Troester 2018, Allot 2018
How can genetics inform our questions?

- Just because a gene is differentially expressed (DE) across self-reported race, does not make it a good candidate.
- *PSPHL* is a pseudogene, expressed in tumor at different levels across race.
- Promoter and first three exons are in 30 kb of DNA not in the reference genome.
Rummel et al 2014: PSPHL

<table>
<thead>
<tr>
<th></th>
<th>del/del</th>
<th>ins/del</th>
<th>ins/ins</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td><5%</td>
<td>1/3</td>
<td>2/3</td>
</tr>
<tr>
<td>WW</td>
<td>2/3</td>
<td>1/3</td>
<td><5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>del/del</th>
<th>ins/del</th>
<th>ins/ins</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>.06</td>
<td>.35</td>
<td>.59</td>
</tr>
<tr>
<td>control</td>
<td>.04</td>
<td>.31</td>
<td>.65</td>
</tr>
<tr>
<td>WW</td>
<td>.62</td>
<td>.34</td>
<td>.04</td>
</tr>
<tr>
<td>control</td>
<td>.64</td>
<td>.34</td>
<td>.02</td>
</tr>
</tbody>
</table>

Similar story for stage, ER/HER2 status, grade, size, lymph node status, though small sub-groups
Assayed 400+ genes of interest on Nanostring (no CNA data)

Assayed with OncoArray, ~6 million SNPs after imputation (v3 1000G)

Race

Carey 2006, Troester 2018, Allot 2018
Access to healthcare and socioeconomics

D’Arcy 2015
Parada 2017

Germline variation

Tumor expression

D’Arcy 2015
Parada 2017

Breast cancer survival

Genome-wide association studies
Azzato 2010, Rafiq 2014, Pirie 2015, Khan 2018

Assayed 400+ genes of interest on Nanostring (no CNA data)
Tumor expression QTL

Race-stratified tumor expression analysis of 400+ genes from germline genotype

mostly cis-eQTL, esp. for WW, some trans-eQTL for AA

some shared with healthy breast (GTEx), but many not shared
(Germline) genetically regulated tumor gene expression

\[R^2 \geq 0.01 \]

- AA (37)
- Both (51)
- Neither (28)
- WW (37)

of genes passing CV R^2 threshold

- 3.1\% variance explained (CV) for WW & AA
- 1\% variance explained (CV)
Expression models weren't generally applicable across race

Exceptions are *PSPHL* and *GSTT2*

This is part of a much larger thread in genetics:

 10.1371/journal.pgen.1007586
 10.1038/s41586-019-1310-4
Predictive accuracy varies by subtype

These CI drawn by inverting permutation test. Due to heterogeneous sub-group size, critical to include variability here.
Back to *PSPHL* example

- Genetically-driven associations after stratifying
- Survival analysis for 46 / 57 genes (AA / WW) in CBCS (admittedly small n for genetic associations)
- Race-stratified cause-specific hazard model on genetically regulated tumor expression (CV imputed)
- Controlling for age at diagnosis, ER status at diagnosis, tumor stage at diagnosis, study phase
Transcriptome-wide association (TWAS): four BC-mortality-associated loci in AA

<table>
<thead>
<tr>
<th>Region</th>
<th>Gene</th>
<th>Hazard Ratio (90% CI - FDR adj)</th>
<th>Z-Statistic<sup>a</sup></th>
<th>P-value<sup>a</sup></th>
<th>GReX R^2_{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20q13.2</td>
<td>AURKA</td>
<td>0.83 (0.73, 0.95)</td>
<td>-2.52</td>
<td>1.5×10^{-3}</td>
<td>0.021</td>
</tr>
<tr>
<td>2p23.1</td>
<td>CAPN13</td>
<td>1.22 (1.07, 1.41)</td>
<td>2.76</td>
<td>5.4×10^{-4}</td>
<td>0.011</td>
</tr>
<tr>
<td>3q26.32</td>
<td>PIK3CA</td>
<td>0.85 (0.74, 0.97)</td>
<td>-2.34</td>
<td>3.2×10^{-3}</td>
<td>0.013</td>
</tr>
<tr>
<td>18q21.33</td>
<td>SERPINB5</td>
<td>0.82 (0.72, 0.93)</td>
<td>-2.85</td>
<td>3.4×10^{-4}</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Collider bias should be a concern: None of these four with genetically regulated tumor expression associated with cancer incidence in AA women available from BCAC using the iCOGs dataset and additional GWAS.
Next steps and CBCS questions

• Genetically regulated tumor expression
 – Collaborate to apply tumor expression models to larger cohorts
 – Local ancestry - better expression models or associations?

• Etiology heterogeneity
 – Why does molecular subtype incidence differ?
 – Subtype-specific risk papers:
 – Outcome disparities within subtype
Acknowledgments

• Arjun Bhattacharya – bhattacharya-a-bt.github.io
• Melissa Troester (UNC) and Troester group
• Andy Olshan (UNC)
• Charles Perou (UNC)
• Montserrat García-Closas (NCI)
• CBCS patients and participants
• CBCS staff

Susan G. Komen® provided financial support for CBCS study infrastructure.

Funding was provided by the National Institutes of Health, National Cancer Institute P01-CA151135, P50-CA05822, and U01-CA179715 to A.F.O, C.M.P. and M.A.T.

M.I.L. is supported by R01-HG009937, R01-MH118349, P01-CA142538, and P30-ES010126.

The Translational Genomics Laboratory is supported in part by grants from the National Cancer Institute (3P30CA016086) and the University of North Carolina at Chapel Hill University Cancer Research Fund.

Genotyping was done at the DCEG Cancer Genomics Research Laboratory using funds from the NCI Intramural Research Program.

eQTL analyses

• We conducted all eQTL analyses stratified by race.
• Age, BMI, postmenopausal status, and the first 5 principal components of the joint AA and WW genotype matrix were included in the models as covariates in C.
• Estimated tumor purity was also included as a covariate to assess its impact on strength and location of eQTLs.
Predictive models

- Gene expression residualized for the covariate matrix
- We estimate w_g with the best predictive of three schemes:
 - (1) elastic-net regularized regression with mixing parameter $a = 0.5$ and penalty parameter tuned over 5-fold cross-validation,
 - (2) linear mixed modeling where the genotype matrix X_g is treated as a matrix of random effects and \hat{w}_g is taken as the best linear unbiased predictor (BLUP) of w_g, using rrBLUP, and
 - (3) multivariate linear mixed modeling as described above, estimated using GEMMA v.0.97.
Survival modeling

- We defined a relevant event as a death due to breast cancer. We aggregated all deaths not due to breast cancer as a competing risk. Any subjects lost to follow-up were treated as right-censored observations.
- We estimated the association of GReX with breast cancer survival by modeling the race-stratified cause-specific hazard function of breast cancer-specific mortality, stratifying on race.
- For a given gene g, the model has form

$$
\lambda_k(t) = \lambda_{0k}(t)e^{GReX_g \beta_g + Z_C \beta_C},
$$

where β_g is the effect size of GReX on the hazard of breast cancer-specific mortality, Z_C represents the matrix of covariates (age at diagnosis, estrogen-receptor status at diagnosis, tumor stage at diagnosis, and study phase), and β_C are the effect sizes of these covariates on survival. $\lambda_{k(t)}$ is the hazard function specific to breast cancer mortality, and $\lambda_{0k(t)}$ is the baseline hazard function.
- We test $H_0: \beta_g = 0$ for each gene g with Wald-type tests, as in a traditional Cox proportional hazards model. We correct for genomic inflation and bias using bacon, a method that constructs an empirical null distribution using a Gibbs sampling algorithm by fitting a three-component normal mixture on Z-statistics from TWAS tests of association.
This is PC1, linear combination with most variance in this dataset.
“Human population structure is not race” - Birney, Raff, Rutherford, Scally bit.ly/36aId0j
Adam Rutherford, “A Brief History of Everyone Who Ever Lived”
Angela Saini, “Superior: The Return of Race Science”