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Carolina Breast Cancer Study 
•  population-based study among NC women (1993-2013) 
•  aims of the study at outset: 

–  integration of epidemiology and molecular biology 
–  identify causes of BC among African-American women (AA) 

and women of European ancestries (WW) 
–  associations between environmental & behavioral factors and BC in 

relation to specific molecular alterations  
(germline and tumor) 

•  young women (20-49 yrs) and self-identified African American 
women oversampled using randomized recruitment 



Carolina Breast Cancer Study 
•  key considerations for the study: 

–  heterogeneity of disease (histopathology, genomics) 
–  known racial disparities in incidence and survival in the US 
–  small portion of incidence explained by germline susceptibility 
–  to what degree does observed variability in disease reflect 

underlying etiologic heterogeneity? 



Carolina Breast Cancer Study 
•  eligibility criteria:  

–  female, 
–  first diagnosis of invasive or in situ breast cancer,  
–  aged 20–74 years at diagnosis, 
–  residence in specified NC counties 

•  this work: 3,828 women with BC (1,865 AA + 1,963 WW) 
from phases 1-3 with relevant survival, clinical, genomic 
variables 





How can genetics inform our questions? 

•  Just because a gene is differentially expressed (DE) across 
self-reported race, does not make it a good candidate 

•  Rummel et al 2014: "PSPHL and breast cancer in African 
American women: causative gene or population 
stratification?" 10.1186/1471-2156-15-38 

•  PSPHL is a pseudogene, expressed in tumor at different 
levels across race 

•  Promoter and first three exons are in 30 kb of DNA not in the 
reference genome 



Rummel et al 2014: PSPHL 
del/del ins/del ins/ins 

AA <5% 1/3 2/3 
WW 2/3 1/3 <5% 

del/del ins/del ins/ins 
AA case .06 .35 .59 

control .04 .31 .65 
WW case .62 .34 .04 

control .64 .34 .02 

Similar story for stage, ER/HER2 status, grade, size, 
lymph node status, though small sub-groups 
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del/del DNA: 



Assayed 400+ genes of interest 
on Nanostring (no CNA data) 

Assayed with OncoArray, 
~6 million SNPs after 
imputation (v3 1000G)  



Tumor expression QTL 
Race-stratified tumor expression analysis 

of 400+ genes from germline genotype 

mostly cis-eQTL, 
esp. for WW, some 
trans-eQTL for AA 

some shared with 
healthy breast 
(GTEx), but many 
not shared 



3.1%	variance	
explained	(CV)	

1%	variance	
explained	(CV)	

this	would	be	
10%	variance	
explained	(CV)	
for	WW	&	AA	

#	of	genes	passing	CV	R2	threshold	

(Germline) genetically regulated tumor gene expression 



Expression models weren't generally applicable across race 
Exceptions	are	
PSPHL	and	GSTT2	

This	is	part	of	a	much	larger	
thread	in	genetics:	
	
•  Mogil	et	al	(2018)		

“Genetic	architecture	of	gene	
expression	traits	across	diverse	
populations”	
10.1371/journal.pgen.1007586	

•  Wojcik	et	al	(2019)		
“Genetic	analyses	of	diverse	
populations	improves	discovery	
for	complex	traits”	
10.1038/s41586-019-1310-4		



Predictive accuracy varies by subtype 

These	CI	drawn	by	inverting	
permutation	test.	Due	to	
heterogeneous	sub-group	
size,	critical	to	include	
variability	here.	



Back to PSPHL example 
•  Genetically-driven associations after stratifying 
•  Survival analysis for 46 / 57 genes (AA / WW) in CBCS 

(admittedly small n for genetic associations) 
•  Race-stratified cause-specific hazard model on 

genetically regulated tumor expression (CV imputed) 
•  Controlling for age at diagnosis, ER status at diagnosis, 

tumor stage at diagnosis, study phase 



Transcriptome-wide association (TWAS):  
four BC-mortality-associated loci in AA 

(90% CI - FDR adj) 

Collider	bias	should	be	a	concern:	None	of	these	four	with	
genetically	regulated	tumor	expression	associated	with	cancer	
incidence	in	AA	women	available	from	BCAC	using	the	iCOGs	
dataset	and	additional	GWAS.	



Next steps and CBCS questions 
•  Genetically regulated tumor expression 

–  Collaborate to apply tumor expression models to larger cohorts 
–  Local ancestry - better expression models or associations? 

•  Etiology heterogeneity 
–  Why does molecular subtype incidence differ?  
–  Subtype-specific risk papers: 

Ahearn et al (2019) 10.1101/733402v1, Zhang et al (2019) 10.1101/778605v2 
Begg & Zabor (2012) 10.1093/aje/kws128, Begg et al (2015) 10.1002/cam4.456  

–  Outcome disparities within subtype 
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eQTL analyses 
•  We conducted all eQTL analyses stratified by race.  
•  Age, BMI, postmenopausal status, and the first 5 

principal components of the joint AA and WW genotype 
matrix were included in the models as covariates in C.  

•  Estimated tumor purity was also included as a covariate 
to assess its impact on strength and location of eQTLs.  



Predictive models 
•  Gene expression residualized for the covariate matrix 
•  We estimate wg with the best predictive of three 

schemes:  
–  (1) elastic-net regularized regression with mixing parameter a = 

0.5 and penalty parameter tuned over 5-fold cross-validation,  
–  (2) linear mixed modeling where the genotype matrix Xg is 

treated as a matrix of random effects and ŵg is taken as the best 
linear unbiased predictor (BLUP) of wg, using rrBLUP, and  

–  (3) multivariate linear mixed modeling as described above, 
estimated using GEMMA v.0.97. 



Survival modeling 
•  We defined a relevant event as a death due to breast cancer. We aggregated all deaths not due 

to breast cancer as a competing risk. Any subjects lost to follow-up were treated as right-censored 
observations. 

•   We estimated the association of GReX with breast cancer survival by modeling the race-stratified 
cause-specific hazard function of breast cancer-specific mortality, stratifying on race. 

•  For a given gene g, the model has form 
 
 
 
where βg is the effect size of GReX on the hazard of breast cancer-specific mortality, ZC 
represents the matrix of covariates (age at diagnosis, estrogen-receptor status at diagnosis, tumor 
stage at diagnosis, and study phase), and βC are the effect sizes of these covariates on survival. 
λk(t) is the hazard function specific to breast cancer mortality, and λok(t) is the baseline hazard 
function.  

•  We test Ho: βg=0 for each gene g with Wald-type tests, as in a traditional Cox proportional 
hazards model. We correct for genomic inflation and bias using bacon, a method that constructs 
an empirical null distribution using a Gibbs sampling algorithm by fitting a three-component 
normal mixture on Z-statistics from TWAS tests of association. 



Self-reported race and ancestry PCs in CBCS 

This	is	PC1,	linear	combination	with	most	variance	in	this	dataset.	
“Human	population	structure	is	not	race”	-	Birney,	Raff,	Rutherford,	Scally	bit.ly/36aId0j		
Adam	Rutherford,	“A	Brief	History	of	Everyone	Who	Ever	Lived”	
Angela	Saini,	“Superior:	The	Return	of	Race	Science”	


