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Abstract

Summary: Knowledge on the relationship between different biological modalities (RNA, chromatin, etc.)
can help further our understanding of the processes through which biological components interact. The
ready availability of multi-omics datasets has led to the development of numerous methods for identifying
sources of common variation across biological modalities. However, evaluation of the performance of
these methods, in terms of consistency, has been difficult because most methods are unsupervised.
We present a comparison of Sparse multiple Canonical Correlation Analysis (Sparse mCCA), Angle-
based Joint and Individual Variation Explained (AJIVE), and Multi-Omics Factor Analysis (MOFA) using
a cross-validation approach to assess overfitting and consistency. Both large and small-sample datasets
were used to evaluate performance, and a permuted null dataset was used to identify overfitting through
the application of our framework and approach. In the large-sample setting, we found that all methods
demonstrated consistency and lack of overfitting; however, in the sample sample size setting, AJIVE
provided the most stable results. We provide an R package so that our framework and approach can be
applied to evaluate other methods and datasets.
Key Words: multi-omics, cross-validation, sparse canonical correlation analysis, multi-omics factor
analysis, angle-based joint and individual variation explained, evaluation

Key points
• Cross-validation provides a useful framework for evaluating

unsupervised multi-omics methods in which the true common variation
across biological modalities is not known.
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• Sample sizes of n=50 or below may result in inconsistent fitting of
multi-omics methods, where correlations found in training data do not
generalize to held out data.

• The contribution plot, where contributions to the common variation
space from two modalities are plotted against each other, provides a
useful visual summary of the result of multi-omics methods.

Introduction
Multi-omics studies are often performed when there is interest in
understanding the relationship between different biological modalities
(RNA, chromatin, etc). In some cases, it is useful to determine the extent
to which these relationships can help develop classes of samples, while in
other cases it is more informative to examine the correlations across data
modalities in order to identify which modalities are strongly associated. As
data generation has become less expensive, investigators are increasingly
generating multiple -omics datasets from a common set of biological
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samples, thus giving rise to demand for statistical methods to analyze the
data. Certain methods, such as iCluster+ [1] and Similarity Network Fusion
(SNF) [2], classify samples into groups. These methods use multiple -
omics platforms to find similarities and differences between samples and
across data types. For example, this type of analysis has been applied to
identify novel tumor subtypes. Supervised methods such as iBoost [3] can
be used to leverage multiple large scale data types to help predict survival
time or other response variables of interest. Other methods determine
which features or biological processes contribute to the common variation
across data types, as well as the magnitude of the relationships. Examples
include Sparse multiple Canonical Correlation Analysis (Sparse mCCA)
[4], Angle-based Joint and Individual Variation Explained (AJIVE) [5],
and Multi-Omics Factor Analysis (MOFA) [6]. Additionally, Canonical
Correlation Analysis (CCA) [7] can be modified for a high-dimensional
setting by running the analysis on the top principal components (PCs) of
each matrix. Unsupervised multi-omics methods, which do not consider a
primary outcome when detecting common variation across data types, are
useful for exploratory data analysis, including assessment of data quality
as well as hypothesis generation, similar to applications of ordination
methods such as principal components analysis (PCA) for experiments
with a single data type. Sample swaps may be detected with unsupervised
multi-omics methods as outlying points in various scatter-plots described
below, in the case that different data types disagree in the placement of
individual samples in the space of common variation.

Several investigators have compared the performance of multi-omics
methods. For example, Meng et al (2016) [8] compared the mathematical
properties of several multi-omics methods. Pucher et al (2018) [9] used
simulated and experimental cancer data sets to compare methods in terms
of classification and feature overlap with known biological pathways.
Additionally, Tini et al (2017) [10] compared methods for sample
clustering. However, assessment of performance of unsupervised methods,
in terms of stability of output and degree of overfitting on experimental
datasets, can be challenging.

The goal of this paper is to identify the extent of overfitting and
the consistency of multi-omics methods. We do not attempt to simulate
multi-omics datasets, as it is extremely difficult to propose realistic
patterns of covariance among numerous multi-omics assays. Instead, we
aim to evaluate method performance by examining the contribution of
each sample in each data type towards the common variation space and
by utilizing a k-fold cross-validation to assess stability and potential
overfitting. All of the published unsupervised multi-omic methods
examined here performed well on large sample-size datasets, but some
displayed some inconsistency on smaller sample-size datasets. We provide
an R package for reproducing the results here and detailed Rmarkdown
vignettes demonstrating software usage. We suggest that researchers in
the burgeoning field of multi-omics consider the evaluation framework
presented here, which leverages the inherent properties of multi-omics
datasets, for assessing newly proposed methods or refinements of existing
methods.

Multi-Omics Methods

Criteria for method inclusion

We chose to evaluate three published unsupervised multi-omics methods,
Sparse mCCA [4], AJIVE [5], and MOFA [6], as well as a simple approach
for applying classical CCA to high dimensional data by first applying
dimension reduction, discussed below. These three published methods
were chosen for their ability to take three or more high dimensional
matrices as input, corresponding to multiple data types measured on
the same individuals, and to extract feature weights per data type,
described in more detail in the following section in our framework for

the evaluation of methods. In addition, methods were chosen either for
having a high citation count (hundreds of papers citing the publications
for Sparse mCCA and JIVE, an earlier algorithm for which AJIVE
is an improvement/refinement), or for evidence of recent and ongoing
development and community interest (MOFA with dozens of citations
since its publication in 2018, and detailed documentation and tutorials).
While numerous additional methods are available for unsupervised multi-
omics integration and analysis, we attempted to choose a small number
that represent distinct geometric decompositions or statistical models
capturing common variation across samples for multiple types of data.
The approaches are further described below:

PC-CCA

CCA [7] was developed to assess relationships between linear
combinations of features of two separate matrices. If we let the matrices
themselves be X1 and X2, then CCA can be applied to identify β1 and
β2 that maximizes Corr(β′1X1, β′2X2). The correlation indicates how
strongly related these two matrices are, and the vectors of weights identify
which features are closely related. While estimates of the weights βi have
a closed-form solution, CCA relies on the number of subjects being larger
than the number of features. Additionally, CCA can only accommodate
two matrices, and thus, it is not appropriate for multi-omics analyses with
more than two assays. In analyses where the datasets have a large number
of features, CCA can be conducted on the top PCs of each matrix. This
method is often called PC-CCA. The number of PCs to include must be
decided beforehand, and the number of PCs can be shown to affect how
well the weights generalize. With null datasets, correlations as high as
0.9 are possible when the number of PCs included in the analysis is large
(Supplementary Fig. 1).

Sparse mCCA

Sparse mCCA [4] is an extension of CCA that allows for the inclusion of
multiple high-dimensional matrices. Sparse mCCA estimates each βi by
maximizing the sum of all pair-wise weighted correlations. Additionally,
Sparse mCCA imposes a sparsity parameter on the weights through a lasso
penalty, which forces a larger proportion of the weights to be set equal to
zero and leaves only non-zero weights for features that are related across
data types. These two adjustments prevent a closed-form solution from
being obtained, and thus, an iterative procedure is conducted to estimate
the weights. Equation 1 provides the objective function for Sparse mCCA.
Pi(βi) corresponds to any convex penalty function for the weights of
matrix i with the default penalty being a fused lasso. An estimate for the
tuning parameter is calculated using a permutation approach, in which the
tuning parameter that provides the smallest permutation p-value for the
sum of the correlations is selected. P values are calculated as the average
number of permutations that provides a sum correlation greater than the
observed one. Sparse mCCA can also be implemented in a supervised
setting in which there is an interest in the prediction of a separate response
variable.

max
βi

∑
i<j

βTi X
T
i Xjβj subject to ||βi||2 ≤ 1, Pi(βi) ≤ ci (1)

AJIVE

AJIVE [5] classifies the variability of each matrix as being a component
of the variation across all data types, the variability within one data type,
or the result of random noise. AJIVE uses an extension of Principal
Angle Analysis and invokes perturbation theory as a guide for variance
segmentation. AJIVE requires the user to specify an initial number of the
signal ranks, and thus, the user needs to examine the scree plot of each
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data type prior to running the software in order to make this determination.
The specification of these ranks is subject to the judgement of the user and
AJIVE can provide different conclusions based upon this decision.

MOFA

MOFA [6] is a factor analysis method that estimates a series of latent
factors to describe the variation across and within data types. MOFA aims
to classify variation as being common across data types; however, unlike
AJIVE, MOFA allows for the variability to be across one, some, or all data
types. MOFA requires that the user either specifies the total number of
hidden factors to estimate or a threshold for removing factors. MOFA also
has the ability to include samples for which data has not been collected for
all assays. This feature is particularly useful as the high cost of collecting
large sequencing data for samples may make it difficult to collect complete
data.

Fig. 1

Framework for Evaluation of Methods

Contributions

The methods described in the previous section provide sets of weights
corresponding to the importance of each feature in each data type. The
larger the absolute value of the weight, the more the corresponding
feature contributes to the common variation. Instead of examining
results in the feature space, we instead look on the sample space and
observe relationships across data types and samples. This is accomplished
by constructing what we call a contribution, which is calculated by
multiplying the estimated weights and the data to obtain an individual
contribution per subject. Let β̂i be the pi by 1 dimensional vector
corresponding to the estimated weights for data type i, and let Xi be
the pi by n matrix corresponding to data type i. The contribution is
then calculated as β̂′iXi. Contributions can be calculated for any multi-
omics method, as long as the output provides a list of weights. We will
demonstrate how this is done in PC-CCA, Sparse mCCA, AJIVE, and
MOFA. Because both PC-CCA and Sparse mCCA are modifications of
Canonical Correlation Analysis (CCA), the calculation of the contributions
is trivial. The weights β̂i in this case correspond to the solution for each
data type, and a simple matrix multiplication can be performed to calculate
the contributions. For AJIVE and MOFA, the contributions are not difficult

to calculate; however, because these methods identify a multi-dimensional
solution, we only focus on the weights for one factor (Figure 1). In AJIVE,
this corresponds to the first column of the loadings matrix of the joint space,
and for MOFA, this corresponds to the weights for the top factor. In the
MOFA analysis, we restrict the method to fit only one factor.

Once contributions are found for each data type, they can be plotted
against the contributions of another data type to visualize the relationships
identified by the multi-omics method of interest. Additionally, samples
that fall off of the diagonal in a contribution plot may be biologically
meaningful outliers, or technical outliers for one of the assays. This plot is
termed the contribution plot, and we can identify method overfitting using
a cross-validation analysis.

Cross-validation

The unsupervised nature of the multi-omic methods makes it difficult to
determine whether a method is overfitting or identifying a true biological
relationship. Data splitting and the projection of estimated contributions
were proposed by Soneson et al (2010) [11] for parameter tuning and
validation of a multi-omics method. Other methods have assessed method
performance by using leave-one-out cross-validation and the projection
of learned factors on new datasets [12]; [13]. By omitting a subset of the
samples from the analysis and predicting their contributions from each
data type in the training set, we can discern whether the relationships from
the full analysis suffer from overfitting or provide unstable results. Our
analysis pipeline is shown in Figure 2. We chose to divide the data into
training and test sets of approximately 80% / 20% of the total samples.
Using the 80% training set, analyses were done for each method, and
corresponding weights were generated for each data type. Contributions
were calculated for the test set by multiplying the weights derived from the
training set by the test set data in the manner appropriate to each method,
as defined above. Critically, our cross-validation loop used for evaluation
of methods takes place outside of any permutation or cross-validation that
a method may use during training or fitting of its model parameters, such
as the calculation of feature weights for each data type.

The results of the methods may not be unique, which can lead to
slight alterations in scaling and sign. Due to this, the results across folds
may identify the same biological process, but provide results of different
magnitudes. To account for this, we scale and change the sign of the cross-
validated contributions to ensure that they are positively correlated with the
results from the full analysis. This procedure is performed separately for
each fold. The sign is flipped if the correlation between the cross-validated
and full-analysis contributions is negative, while scaling is achieved by
subtracting the mean and dividing it by either the standard deviation or the
median absolute deviation. If the contributions are not unimodal or contain
outliers, we recommend using the median absolute deviation for scaling.

To avoid difficulties in aligning weights across folds, in our evaluation
we only consider the set of weights corresponding to the first factor. In
MOFA, factors are arbitrarily labelled and thus no formal ordering is
defined for the "first" or "second" factor. Repeating the analysis will yield a
different labelling scheme for each factor while factors are still describing
the same biological process. This necessitates the alignment of factors
across multiple folds and creates a computational challenge. For sparse
mCCA and MOFA, the first set of weights or first factor typically yields
the strongest pair-wise correlations. As more sets of weights are estimated,
the correlations typically decrease (see Fig 2b in [6]). Lower factors may
be more susceptible to fluctuations, such as sampling variability in the
samples chosen for the training set.

After the contributions are appropriately scaled, contribution plots
can be constructed for each pair-wise combination of the assays in
the test set. We will refer to these plots as the cross-validation (CV)
contribution plots and the contribution plots from the full analysis as the
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Fig. 2

full contribution plots. By examining the change in correlations between
the CV contribution plots and the full contribution plots for each pair-wise
data type pair, we may observe the degree to which each method suffers
from overfitting. The full contribution plots reflect the typical results that
a user would observe when running a method on their entire dataset, while
the CV contribution plots reveal any issues with the generalization of
feature weights for new data, in that we observe the correlations obtained
on all samples in the dataset when those samples are not used for training.
It is important to note that because the identified factor may only be a
small portion of the entire solution, the correlation of the contribution plot
should not be compared across methods, but rather within one method
by comparing the correlation in the full analysis to the correlation in the
cross-validated analysis. Methods like AJIVE and MOFA identify a multi-
dimensional solution, and thus, a low correlation in the contribution plot
may not indicate that the method is performing poorly, but rather that the
top factor captures a low correlation between the two data types of interest.
Figure 3 provides examples of good and poor results for the contribution
plot generated using artificial data. Figure 3a shows a strong correlation
in both the full and CV contribution plots, indicating that the method is
not overfitting and that the two data types are related. Figure 3b shows no
correlation in the full and CV contribution plots, which also indicates that
the method is not overfitting, but rather, that the two data types are not
related. Figure 3c shows a strong correlation in the full contribution plot
and no correlation in the CV contribution plot, thus demonstrating that
the method is overfitting on the data and that there does not appear to be
a relationship between these two data types. We also generate overfitting
plots, which plots lines connecting the pair-wise correlations of the full
and cross-validated contribution plots to provide a useful overview of
the change in correlation between the full and CV analysis for all pairs
of assays. We also plot contributions from the cross-validation analysis
against contributions from the full analysis within each data type. We

call these the comparison plots, and a strong linear correlation indicates
method consistency.

Multi-omics Datasets

Data from The Cancer Genome Atlas (TCGA) [3] [14] was used to evaluate
method performance for Sparse mCCA, AJIVE, and MOFA. We applied
these three methods to 558 breast cancer samples using Copy Number
Variation (CNV), RNA expression, and micro RNA expression. CNV was
summarized for 216 segments; RNA expression was measured for 12,434
genes; and miRNA expression was measured for 305 miRNAs. Five folds
were selected for the analysis, and fold membership was fully randomized.
Contribution and comparison plots were generated for each data type to
evaluate the degree of overfitting and the consistency of the results.

Data from Li, et al (2016) [15] was used as a second validation data set.
This collection of datasets contained fewer samples and thus was used to
examine stability of methods with smaller sample sizes. RNA expression,
DNase, and protein expression were collected for lymphoblastoid cell lines
from Yoruban individuals. DNase was measured for 699,906 peaks; RNA
expression was measured for 13,967 genes; and protein expression was
measured for 4,375 proteins for 53 samples.

To demonstrate the ability of our framework to identify overfitting, we
analyzed datasets with no relationship across assays, referred to as null
datasets, using PC-CCA, Sparse mCCA, AJIVE, and MOFA. Permuted
null datasets were generated by permuting the samples for each data type
in the TCGA breast cancer data. Because PC-CCA can only accommodate
two data types, we used only RNA and miRNA for this analysis. Five
folds were selected for the analysis, with the fold membership being fully
randomized. For all datasets, contribution plots, comparison plots, and
overfitting plots were generated to evaluate method performance.
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Fig. 3

Evaluation of Methods
We applied our evaluation framework to datasets with both large (TCGA
breast cancer) and small (Li et al) sample sizes, as well as a permuted null
dataset. Sparse mCCA, AJIVE, and MOFA all demonstrate consistency
and a lack of overfitting in the large-sample size analysis. The overfitting
plots for the large-sample size analysis (Figure 4 a-c) have near zero
slopes, indicating that the relationships found in the training set generalize
to the held out set. The difference in the magnitude of the correlations
across methods does not indicate a lack of overfitting, but rather that the
top factor indicated a strong or weak relationship between the specified
data types. This artifact is not necessarily a limitation of the method,
but rather might be explained by the fact that we are considering only
the first set of weights in our analysis. Side-by-side contribution plots
(Supplementary Figures 2-10) also demonstrate a lack of overfitting and
confirm that there are no sample outliers that are overly influencing the
results. Comparison plots (Supplementary Figures 11-13) show that the
contributions for the CV analysis and full analysis are similar, indicating
overall method consistency. AJIVE was observed to have reduced pair-
wise correlations for contributions including the CNV assay, and this result
persisted after attempting with a higher pre-specified rank (Supplementary
Figure 14). Overall, for the large-sample size analysis, we found that Sparse
mCCA and MOFA did not overfit and found large pair-wise correlations
between contributions from all assays. AJIVE also showed a lack of

Fig. 4

overfitting, however a large pair-wise correlation was only found between
RNA and miRNA.

We further investigated the contributions for AJIVE, Sparse mCCA,
and MOFA. Contributions from Sparse mCCA are highly correlated
(r > 0.97, Pearson correlation coefficient) with MOFA across all data
types. AJIVE contributions have strong negative correlations with both
Sparse mCCA (r = −0.91) and MOFA (r = −0.92) for mRNA (noting
that the sign here is arbitrary), while exhibiting a moderate negative
correlation in miRNA (r ≈ −0.77). AJIVE contributions for CNV are
not correlated with Sparse mCCA (r = −0.03) or MOFA (r = 0.05)
(Supplementary Figures 15-17). mRNA contributions for all methods were
found to be bimodal and highly correlated with the expression of the
estrogen receptor 1 (ESR1) gene (Supplementary Figure 18). Previous
studies have found that the expression of the ESR1 gene is amplified in a
subset of breast cancers, providing some biological validation for the top
contribution – estimated without any prior information about ESR1 gene
expression – for all methods run on this dataset [16].

Alternatively, in the small-sample size analysis, Sparse mCCA and
MOFA appear to overfit in the full analysis, while AJIVE does not overfit.
Plot 4d shows a lack of overfitting with AJIVE in the small-sample
analysis, while plots 4e and 4f show a consistent drop in the correlation
for the CV analysis. Thus, sparse mCCA and MOFA are able to identify
strong linear relationships in the full analysis, but the correlations are
substantially reduced in the CV analysis. This may reflect a reduced ability
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for consistent detection of top factors for small-sample datasets. Side-by-
side contribution plots (Supplementary Figures 19-27) show more clearly
a decrease in correlation with Sparse mCCA and MOFA, but not with
AJIVE, which maintains a relatively weak correlation in both analyses.
Comparison plots (Supplementary Figures 28-30) show less consistency
than in the large-sample analysis.

We assessed the degree to which the results were robust when varying
the number of folds. Sparse mCCA was used to analyze the small-sample
size dataset using both 3 and 10 folds. The 3 fold analysis yielded
small training set sizes, which led to poor prediction for the test set
samples (Supplementary Figure 31). Alternatively, in the 10 fold analysis,
small test set sizes made contribution scaling difficult, which also led
to reduced correlation of the cross-validated contributions with the full
set contributions (Supplementary Figure 32). Additionally, many methods
have extensive run times and thus conducting an analysis with many folds
can create a prohibitive computational burden.

Analyses for the permuted null dataset showed that PC-CCA using 100
PCs per data type identifies a strong relationship between miRNA and RNA
when no relationship exists (Figure 5 a). Sparse mCCA correctly identifies
no relationship (Figure 5 b) in the full analysis; AJIVE and MOFA also
identify no relationship (Supplementary Figures 33-34). These plots show
the ability of our framework to identify overfitting, as well as the ability
of Sparse mCCA, AJIVE, and MOFA to not overfit the null dataset.

Fig. 5

Discussion
In this paper, we have proposed a framework and approach for the
evaluation of unsupervised multi-omics methods. Sparse mCCA, AJIVE,

MOFA, and PC-CCA were compared based on consistency and the degree
of overfitting in one large-sample size dataset, one small-sample size
dataset and one permuted null dataset. All methods performed well with the
large-sample dataset, with AJIVE somewhat underperforming by failing
to detect a contribution from CNV to the top factor, which other methods
detected and which had stable correlation in cross-validated contributions.
However, both Sparse mCCA and MOFA showed some evidence of either
overfitting or lack of consistency with the small-sample dataset. PC-CCA
overfit the null dataset, while the other methods accurately identified a null
relationship. Previous work [9] looked at the sensitivity and specificity of
methods using simulated data. In contrast, our framework examines the
extent of overfitting and does not make any simulation assumptions.

There are now dozens of methods for unsupervised multi-omics data
analysis, and the list continues to grow. Other multi-omics approaches
that we did not compare here use re-formulations of partial least squares
(PLS)[17] , or co-inertia analysis (CIA)[18] , and often make use of lasso
penalty or sparse thresholding to induce sparsity on feature weights.[19]

Future work may include investigation into the alignment of weights
across folds and replications and how to incorporate more than one set
of weights. Argelaguet et al (2019) [20] propose comparing the Pearson
correlation coefficient between every pair of factors as a way to address
these concerns. Additionally, classical CCA could be used to perform
matching of factors across folds or replicate runs, by running CCA on every
pair of contributions. We did not evaluate the sensitivity and specificity of
the methods we tested, as they are designed to describe variation, rather
than classification, of samples. A separate analysis similar to Pucher et al
(2018) [9] would be needed to evaluate AJIVE and MOFA on the claims
of accuracy. Here we examined the biological meaningfulness of the top
factor found in the TCGA breast cancer dataset by plotting the mRNA
contributions against expression of estrogen receptor 1, for which we have
from literature some external support of its relevance as a primary axis of
co-variation of molecular profiles of breast tumors. In general, downstream
assessment of the biological meaningfulness of a factor can be achieved
through gene set analysis, by defining the observed gene set as the non-
zero or top weighted genes from the gene expression weights estimated by
the multi-omics methods. The MOFA R package includes a function for
performing this type of "Feature Set Enrichment Analysis". For non-gene
expression features, non-zero or top weights for features can be examined
with respect to their co-localization with weights from other data types
on the genome, or with various publicly available genomic tracks such as
cell-type specific regulatory regions [21][22].

We provide an R package called MOVIE (Multi-Omics VIsualization
of Estimated contributions) and documentation to assist with the
comparison of future methods and datasets using our framework.
Package source code is publicly available: https://github.com/
mccabes292/movie.
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2 Figure Legends
Figure 1: Each method shown in the figure generates a set of weights for
each data type. Our analysis only considers the first set of weights to avoid
issues related to a potentially complex set of mappings of factors across
data splits.

Figure 2: Pipeline for cross-validation analysis. Training Data: Dataset is
subset to 80% of the original data and will be used to train the model. Multi-
omics Methods: The training data are analyzed using the specified method.
Output: Weights are output from the multi-omics methods. Test Data: The
remaining 20% of the original data are used as test data and multiplied
by the subsequent weights. Contributions: The result of multiplying the
output weights by the test set data. Each sample in the test data yields one
number that represents the contribution per data type.

Figure 3: The figure provides hypothetical scenarios for the contribution
plot, generated using artificial data. a. A strong correlation in both the full
and CV plots, indicating that the method accurately fits the data and that the
two data types are linearly related. b. A null correlation in both the full and
CV plots, indicating that the method did not overfit and that the two data
types are not related in terms of this factor. c. A strong linear relationship
in the full plot and a null relationship in the CV plots, indicating that the
method overfit and that the two data types are not associated with the top
factor.

Figure 4: Overfitting plot: Plots of the pair-wise correlations identified
in the full and CV contribution plots for each method. The left column
(plots a-c) corresponds to the large-sample analysis (n=558; TCGA breast
cancer), while the right column (plots d-f) corresponds to the small-
sample size analysis (n=53; Li, et al 2016) . Rows correspond to AJIVE,
Sparse mCCA, and MOFA, respectively. Flat lines indicate non-overfitting
methods, while lines with a negative slope indicate a large change in the
results for the full and CV plots.

Figure 5: Side-By-Side contribution plots for a) PC-CCA with 100
PCs and b) Sparse mCCA with the null dataset: Left panels show the
contribution plots from the full analysis, while right panels show the
contribution plots for the CV analysis. Pair-wise correlations are reported
on the figure.


